# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-(4-{[(*E*)-5-Chloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime

## Li Zhao<sup>a</sup>\* and Seik Weng Ng<sup>b</sup>

<sup>a</sup>School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: zhaoli\_72@163.com

Received 21 August 2010; accepted 27 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.076; wR factor = 0.239; data-to-parameter ratio = 15.5.

The title compound,  $C_{15}H_{13}CIN_2O_2$ , is an aromatic Schiff base having an aldoxime substituent; the two rings on the azomethine linkage are twisted by 44.4 (1)°. The phenolic H atom is intramolecularly hydrogen bonded to the azomethine N atom, generating an S(6) ring. In the crystal, inversion dimers linked by pairs of  $O-H\cdots N$  hydrogen bonds occur. The crystal studied was a non-merohedral twin with a 35% minor component.

#### **Related literature**

For background to oxime-type compounds, see: Dong *et al.* (2009, 2010*b*). For the synthesis, see: Rafiq *et al.* (2008); Dong *et al.* (2010*a*). For the treatment of non-merohedrally twinned diffraction intensities, see: Spek (2009). We have reported the crystal structure of one of the first examples of a Schiff base bearing the oxime unit, see: Zhao *et al.* (2009).



#### Experimental

Crystal data

| $C_{15}H_{13}CIN_2O_2$ | a = 15.356 (2) Å |
|------------------------|------------------|
| $M_r = 288.72$         | b = 14.035 (2) Å |
| Monoclinic, $P2_1/c$   | c = 6.1124 (6) Å |

| $\beta = 95.244 \ (1)^{\circ}$ |
|--------------------------------|
| $V = 1311.8 (2) \text{ Å}^3$   |
| Z = 4                          |
| Mo $K\alpha$ radiation         |

#### Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.892, T_{\rm max} = 0.986$ 

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.076 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.239 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 2970 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.41 \text{ e } \text{ Å}^{-3} \\ 192 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{ Å}^{-3} \\ 2 \text{ restraints} \end{split}$$

**Table 1** Hydrogen-bond geometry (Å, °).

| 3 (6) |
|-------|
| / (6) |
|       |

 $\mu = 0.29 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.092$ 

 $0.40 \times 0.10 \times 0.05~\mathrm{mm}$ 

3689 measured reflections

2971 independent reflections

1552 reflections with  $I > 2\sigma(I)$ 

Symmetry code: (i) -x + 2, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Educational Department Foundation of Gansu Province (No. 20873) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2704).

#### References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, W.-K., Duan, J.-G., Guan, Y.-H., Shi, J.-Y. & Zhao, C.-Y. (2009). Inorg. Chim. Acta, 362, 1129–1134.
- Dong, W.-K., Sun, Y.-X., He, X.-N., Tong, J.-F. & Wu, J.-C. (2010b). Spectrochim. Acta Part A, 76, 476–483.
- Dong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010a). Polyhedron, 29, 2087–2097.
- Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, 02462.

supplementary materials

Acta Cryst. (2010). E66, o2474 [doi:10.1107/S1600536810034586]

## 1-(4-{[(*E*)-5-Chloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime

### L. Zhao and S. W. Ng

#### Comment

Oxime-type compounds are a very important ligands in coordination chemistry (Dong *et al.*, 2010*b*; Dong *et al.*, 2009). 4-Aminophenylethanone oxime is a amino compound having an oxime unit, a unit that can undergo a wide range of transformations. On the other hand, the amino unit lends itself to condensation with carbonyl compounds to yield Schiff bases, yet another class of compounds having an equally wide range of applications. We have reported the crystal structure of one of the first examples of a Schiff base bearing the oxime unit (Zhao *et al.*, 2009). Here we report the synthesis and crystal structure of (E)-4-[(1-Hydroxyimino)ethyl]-N-(4'-methylbenzylidene)aniline (I), (Fig. 1).

The single-crystal structure of the title compound is built up by discrete  $C_{15}H_{13}ClN_2O_2$  molecules, in which all bond lengths are in normal ranges. Within the molecule, the two rings on the azomethine linkage are twisted by 44.4 (1) °. In the crystal structure, adjacent molecules are connected by an O–H···N<sub>oxime</sub> hydrogen bond to generate a dimer (Table 1 and Fig. 2).

#### Experimental

4-Aminophenylethanone oxime was prepared by 1-(4-aminophenyl)ethanone, hydroxylamine sulfate and sodium acetate (Rafiq *et al.*, 2008; Dong *et al.*, 2010*a*). To an ethanol solution (6 ml) of 4-aminophenylethanone oxime (152.1 mg, 1.00 mmol) was added dropwise an ethanol solution (6 ml) of 5-chlorosalicylaldehyde (159.2 mg, 1.00 mmol). The mixture solution was stirred at 328 K for 5 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried *in vacuo* and purified by recrystallization from ethanol to yield 266.5 mg (Yield, 92.3%) of solid; m.p. 484–486 K. Pale-yellow needle-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a mixed solution of ethyl acetate-chloroform (3:2) of (I) at room temperature for about four weeks. Anal. Calcd. for  $C_{15}H_{13}ClN_2O_2$ : C, 62.40; H, 4.54; N, 9.70; Found: C, 62.22; H, 4.50; N, 9.85.

#### Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H of 0.85±0.01 Å; their temperature factors were freely refined.

The crystal is a non-merohedral twin; the diffraction intensities were separated into two domains by using *PLATON* (Spek, 2009); the minor twin component was 35%.

The somewhat large weighting scheme is probably the consequence of the twinning. Lowering the  $2\theta$  limit to  $50^{\circ}$  leads to a marginally better refinement but the weighting scheme is identical.

**Figures** 



Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of  $C_{15}H_{13}ClN_2O$  at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. Hydrogen-bonded dimer.

## 1-(4-{[(*E*)-5-Chloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime

Crystal data

| $C_{15}H_{13}CIN_2O_2$         | F(000) = 600                                          |
|--------------------------------|-------------------------------------------------------|
| $M_r = 288.72$                 | $D_{\rm x} = 1.462 \ {\rm Mg \ m}^{-3}$               |
| Monoclinic, $P2_1/c$           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc           | Cell parameters from 1371 reflections                 |
| a = 15.356 (2) Å               | $\theta = 2.7 - 24.9^{\circ}$                         |
| b = 14.035 (2)  Å              | $\mu = 0.29 \text{ mm}^{-1}$                          |
| c = 6.1124 (6) Å               | <i>T</i> = 293 K                                      |
| $\beta = 95.244 \ (1)^{\circ}$ | Needle-like, yellow                                   |
| $V = 1311.8 (2) \text{ Å}^3$   | $0.40\times0.10\times0.05~mm$                         |
| Z = 4                          |                                                       |

#### Data collection

| 2971 independent reflections                                              |
|---------------------------------------------------------------------------|
| 1552 reflections with $I > 2\sigma(I)$                                    |
| $R_{\rm int} = 0.092$                                                     |
| $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ |
| $h = -19 \rightarrow 19$                                                  |
| $k = -18 \rightarrow 18$                                                  |
| $l = -2 \rightarrow 7$                                                    |
|                                                                           |

#### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods         |
|---------------------------------|------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                   |
| $R[F^2 > 2\sigma(F^2)] = 0.076$ | Hydrogen site location: inferred from neighbouring sites               |
| $wR(F^2) = 0.239$               | H atoms treated by a mixture of independent and constrained refinement |

| <i>S</i> = 1.02  | $w = 1/[\sigma^2(F_o^2) + (0.1159P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|------------------|---------------------------------------------------------------------------|
| 2970 reflections | $(\Delta/\sigma)_{max} = 0.001$                                           |
| 192 parameters   | $\Delta \rho_{max} = 0.41 \text{ e Å}^{-3}$                               |
| 2 restraints     | $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У            | Ζ           | $U_{\rm iso}^*/U_{\rm eq}$ |
|------|-------------|--------------|-------------|----------------------------|
| C11  | 0.26367 (8) | 0.34104 (10) | 0.2064 (3)  | 0.0716 (5)                 |
| N1   | 0.6685 (2)  | 0.3635 (2)   | 0.1036 (6)  | 0.0378 (9)                 |
| 01   | 0.5752 (2)  | 0.4086 (3)   | -0.2569 (6) | 0.0543 (9)                 |
| N2   | 0.9958 (2)  | 0.4344 (2)   | 0.8002 (6)  | 0.0444 (10)                |
| 02   | 1.0777 (2)  | 0.4341 (2)   | 0.9205 (7)  | 0.0565 (10)                |
| C1   | 0.5046 (3)  | 0.3912 (3)   | -0.1470 (8) | 0.0395 (11)                |
| C2   | 0.4222 (3)  | 0.4095 (3)   | -0.2484 (8) | 0.0454 (11)                |
| H2A  | 0.4164      | 0.4333       | -0.3910     | 0.054*                     |
| C3   | 0.3485 (3)  | 0.3930 (3)   | -0.1418 (9) | 0.0481 (12)                |
| Н3   | 0.2933      | 0.4051       | -0.2124     | 0.058*                     |
| C4   | 0.3566 (3)  | 0.3589 (3)   | 0.0678 (9)  | 0.0421 (11)                |
| C5   | 0.4378 (3)  | 0.3407 (3)   | 0.1758 (8)  | 0.0407 (10)                |
| H5   | 0.4424      | 0.3178       | 0.3192      | 0.049*                     |
| C6   | 0.5131 (3)  | 0.3569 (3)   | 0.0687 (7)  | 0.0353 (10)                |
| C7   | 0.5974 (3)  | 0.3471 (3)   | 0.1921 (7)  | 0.0359 (10)                |
| H7   | 0.6002      | 0.3285       | 0.3386      | 0.043*                     |
| C8   | 0.7485 (2)  | 0.3677 (3)   | 0.2391 (7)  | 0.0350 (10)                |
| С9   | 0.8234 (3)  | 0.3372 (3)   | 0.1531 (7)  | 0.0359 (10)                |
| H9   | 0.8206      | 0.3124       | 0.0116      | 0.043*                     |
| C10  | 0.9030 (3)  | 0.3438 (3)   | 0.2787 (8)  | 0.0368 (10)                |
| H10  | 0.9531      | 0.3219       | 0.2201      | 0.044*                     |
| C11  | 0.9104 (2)  | 0.3813 (3)   | 0.4848 (7)  | 0.0327 (10)                |
| C12  | 0.8338 (2)  | 0.4151 (3)   | 0.5670 (7)  | 0.0368 (10)                |
| H12  | 0.8368      | 0.4427       | 0.7058      | 0.044*                     |
| C13  | 0.7546 (3)  | 0.4079 (3)   | 0.4454 (7)  | 0.0374 (10)                |
| H13  | 0.7044      | 0.4304       | 0.5027      | 0.045*                     |
| C14  | 0.9956 (3)  | 0.3880 (3)   | 0.6196 (8)  | 0.0363 (10)                |
| C15  | 1.0748 (3)  | 0.3417 (3)   | 0.5426 (9)  | 0.0524 (13)                |
| H15A | 1.1216      | 0.3436       | 0.6580      | 0.079*                     |
| H15B | 1.0921      | 0.3752       | 0.4165      | 0.079*                     |
| H15C | 1.0616      | 0.2767       | 0.5037      | 0.079*                     |
| H1   | 0.619 (3)   | 0.395 (4)    | -0.166 (8)  | 0.10 (2)*                  |
| H2   | 1.076 (4)   | 0.471 (4)    | 1.031 (8)   | 0.12 (3)*                  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$   | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|-----|------------|-----------------|-----------------|------------|------------|------------|
| Cl1 | 0.0347 (6) | 0.0879 (10)     | 0.0928 (13)     | 0.0041 (6) | 0.0083 (7) | 0.0070 (9) |

# supplementary materials

| N1  | 0.0316 (19) | 0.0419 (19) | 0.039 (2) | 0.0017 (14)  | -0.0015 (17) | -0.0003 (16) |
|-----|-------------|-------------|-----------|--------------|--------------|--------------|
| 01  | 0.048 (2)   | 0.075 (2)   | 0.040 (2) | 0.0013 (17)  | 0.0039 (18)  | 0.0068 (18)  |
| N2  | 0.0351 (19) | 0.050 (2)   | 0.045 (3) | -0.0027 (16) | -0.0121 (18) | 0.0007 (19)  |
| O2  | 0.0406 (17) | 0.061 (2)   | 0.064 (3) | 0.0004 (15)  | -0.0211 (17) | -0.004 (2)   |
| C1  | 0.037 (2)   | 0.038 (2)   | 0.041 (3) | 0.0029 (18)  | -0.005 (2)   | -0.003 (2)   |
| C2  | 0.050 (3)   | 0.041 (2)   | 0.043 (3) | 0.006 (2)    | -0.014 (2)   | -0.001 (2)   |
| C3  | 0.037 (2)   | 0.045 (3)   | 0.059 (4) | 0.0054 (19)  | -0.011 (2)   | -0.005 (2)   |
| C4  | 0.033 (2)   | 0.039 (2)   | 0.053 (3) | 0.0005 (17)  | -0.001 (2)   | -0.005 (2)   |
| C5  | 0.040 (2)   | 0.037 (2)   | 0.044 (3) | 0.0021 (18)  | -0.004 (2)   | -0.002 (2)   |
| C6  | 0.032 (2)   | 0.036 (2)   | 0.037 (3) | -0.0014 (17) | -0.0029 (19) | -0.0036 (19) |
| C7  | 0.039 (2)   | 0.034 (2)   | 0.033 (2) | 0.0015 (17)  | -0.004 (2)   | -0.0011 (19) |
| C8  | 0.032 (2)   | 0.035 (2)   | 0.037 (3) | -0.0023 (16) | -0.0002 (19) | 0.0018 (19)  |
| C9  | 0.039 (2)   | 0.038 (2)   | 0.030 (2) | -0.0001 (17) | 0.0020 (19)  | -0.0032 (18) |
| C10 | 0.030 (2)   | 0.039 (2)   | 0.042 (3) | 0.0003 (17)  | 0.005 (2)    | -0.002 (2)   |
| C11 | 0.028 (2)   | 0.030 (2)   | 0.040 (3) | -0.0040 (15) | 0.0033 (19)  | 0.0008 (18)  |
| C12 | 0.037 (2)   | 0.043 (2)   | 0.030 (2) | -0.0021 (18) | -0.0006 (19) | -0.0060 (19) |
| C13 | 0.029 (2)   | 0.046 (2)   | 0.037 (3) | 0.0025 (17)  | 0.0045 (19)  | -0.003 (2)   |
| C14 | 0.032 (2)   | 0.033 (2)   | 0.042 (3) | -0.0031 (17) | -0.002 (2)   | 0.005 (2)    |
| C15 | 0.031 (2)   | 0.066 (3)   | 0.060 (3) | 0.003 (2)    | 0.005 (2)    | -0.005 (3)   |
|     |             |             |           |              |              |              |

# Geometric parameters (Å, °)

| Cl1—C4    | 1.743 (5) | C6—C7       | 1.444 (6) |
|-----------|-----------|-------------|-----------|
| N1—C7     | 1.282 (5) | С7—Н7       | 0.9300    |
| N1—C8     | 1.419 (5) | C8—C13      | 1.376 (6) |
| 01—C1     | 1.348 (5) | C8—C9       | 1.375 (5) |
| 01—H1     | 0.85 (5)  | C9—C10      | 1.387 (6) |
| N2-C14    | 1.281 (6) | С9—Н9       | 0.9300    |
| N2—O2     | 1.398 (4) | C10—C11     | 1.360 (6) |
| O2—H2     | 0.86 (5)  | C10—H10     | 0.9300    |
| C1—C2     | 1.382 (6) | C11—C12     | 1.403 (5) |
| C1—C6     | 1.398 (6) | C11—C14     | 1.484 (5) |
| C2—C3     | 1.376 (6) | C12—C13     | 1.370 (5) |
| C2—H2A    | 0.9300    | C12—H12     | 0.9300    |
| C3—C4     | 1.363 (7) | C13—H13     | 0.9300    |
| С3—Н3     | 0.9300    | C14—C15     | 1.492 (6) |
| C4—C5     | 1.379 (6) | C15—H15A    | 0.9600    |
| C5—C6     | 1.400 (6) | C15—H15B    | 0.9600    |
| С5—Н5     | 0.9300    | C15—H15C    | 0.9600    |
| C7—N1—C8  | 119.1 (4) | C13—C8—N1   | 122.3 (4) |
| C1        | 104 (4)   | C9—C8—N1    | 118.3 (4) |
| C14—N2—O2 | 112.6 (4) | C8—C9—C10   | 119.6 (4) |
| N2—O2—H2  | 109 (5)   | С8—С9—Н9    | 120.2     |
| O1—C1—C2  | 119.2 (4) | С10—С9—Н9   | 120.2     |
| O1—C1—C6  | 121.5 (4) | C11—C10—C9  | 122.2 (4) |
| C2—C1—C6  | 119.3 (4) | C11—C10—H10 | 118.9     |
| C3—C2—C1  | 121.1 (5) | C9—C10—H10  | 118.9     |
| C3—C2—H2A | 119.5     | C10—C11—C12 | 117.4 (4) |
| C1—C2—H2A | 119.5     | C10-C11-C14 | 122.2 (4) |
|           |           |             |           |

| C4—C3—C2     | 119.7 (4)  | C12—C11—C14     | 120.4 (4)  |
|--------------|------------|-----------------|------------|
| С4—С3—Н3     | 120.2      | C13—C12—C11     | 120.9 (4)  |
| С2—С3—Н3     | 120.2      | C13—C12—H12     | 119.6      |
| C3—C4—C5     | 121.1 (4)  | C11—C12—H12     | 119.6      |
| C3—C4—Cl1    | 119.9 (4)  | C12—C13—C8      | 120.6 (4)  |
| C5—C4—Cl1    | 119.0 (4)  | С12—С13—Н13     | 119.7      |
| C4—C5—C6     | 119.7 (5)  | С8—С13—Н13      | 119.7      |
| С4—С5—Н5     | 120.1      | N2-C14-C11      | 116.3 (4)  |
| С6—С5—Н5     | 120.1      | N2-C14-C15      | 123.7 (4)  |
| C1—C6—C5     | 119.2 (4)  | C11—C14—C15     | 120.0 (4)  |
| C1—C6—C7     | 121.8 (4)  | C14—C15—H15A    | 109.5      |
| C5—C6—C7     | 118.7 (4)  | C14—C15—H15B    | 109.5      |
| N1—C7—C6     | 121.3 (4)  | H15A—C15—H15B   | 109.5      |
| N1—C7—H7     | 119.4      | C14—C15—H15C    | 109.5      |
| С6—С7—Н7     | 119.4      | H15A—C15—H15C   | 109.5      |
| C13—C8—C9    | 119.2 (4)  | H15B—C15—H15C   | 109.5      |
| O1—C1—C2—C3  | -179.8 (4) | C7—N1—C8—C9     | 147.4 (4)  |
| C6—C1—C2—C3  | -1.0 (6)   | C13—C8—C9—C10   | 2.7 (6)    |
| C1—C2—C3—C4  | 0.5 (6)    | N1-C8-C9-C10    | 177.6 (4)  |
| C2—C3—C4—C5  | 0.2 (7)    | C8—C9—C10—C11   | -1.2 (6)   |
| C2—C3—C4—Cl1 | 178.2 (3)  | C9—C10—C11—C12  | -1.0 (6)   |
| C3—C4—C5—C6  | -0.4 (6)   | C9—C10—C11—C14  | 179.8 (4)  |
| Cl1—C4—C5—C6 | -178.4 (3) | C10-C11-C12-C13 | 1.7 (6)    |
| O1—C1—C6—C5  | 179.6 (4)  | C14—C11—C12—C13 | -179.0 (4) |
| C2—C1—C6—C5  | 0.8 (6)    | C11—C12—C13—C8  | -0.3 (7)   |
| O1—C1—C6—C7  | 6.1 (6)    | C9—C8—C13—C12   | -1.9 (6)   |
| C2—C1—C6—C7  | -172.6 (4) | N1—C8—C13—C12   | -176.6 (4) |
| C4—C5—C6—C1  | -0.1 (6)   | O2—N2—C14—C11   | 177.7 (3)  |
| C4—C5—C6—C7  | 173.6 (4)  | O2—N2—C14—C15   | -1.9 (6)   |
| C8—N1—C7—C6  | 170.1 (3)  | C10-C11-C14-N2  | 172.3 (4)  |
| C1—C6—C7—N1  | -4.7 (6)   | C12—C11—C14—N2  | -7.0 (6)   |
| C5—C6—C7—N1  | -178.2 (3) | C10—C11—C14—C15 | -8.1 (6)   |
| C7—N1—C8—C13 | -37.9 (6)  | C12—C11—C14—C15 | 172.7 (4)  |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|------------------------------------------|-------------|--------------|--------------|---------|
| O1—H1…N1                                 | 0.85 (5)    | 1.81 (3)     | 2.594 (5)    | 153 (6) |
| O2—H2···N2 <sup>i</sup>                  | 0.86 (5)    | 2.06 (4)     | 2.819 (5)    | 147 (6) |
| Symmetry codes: (i) $-x+2, -y+1, -z+2$ . |             |              |              |         |

Fig. 1





Fig. 2